OFFSET
1,1
COMMENTS
Binomial transform of 4 followed by a signed version of A005009.
Inverse binomial transform of 4 followed by A000079.
a(n+1) - a(n) = 7*(-1)^n.
A168230 without initial term 0 gives partial sums.
Nonsimple continued fraction expansion of 2+2*sqrt(2/3) = 3.6329931618... - R. J. Mathar, Mar 08 2012
LINKS
FORMULA
a(n) = (1 - 7*(-1)^n)/2.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 4.
a(n) = a(n-2) for n > 2; a(1) = 4, a(2) = -3.
G.f.: x*(4 - 3*x)/((1-x)*(1+x)).
E.g.f.: (1/2)*(-1 + exp(x))*(7 + exp(x))*exp(-x). - G. C. Greubel, Jul 17 2016
MATHEMATICA
LinearRecurrence[{0, 1}, {4, -3}, 50] (* or *) Table[(1 - 7*(-1)^n)/2, {n, 0, 25}] (* G. C. Greubel, Jul 17 2016 *)
PadRight[{}, 120, {4, -3}] (* Harvey P. Dale, Oct 20 2018 *)
PROG
(Magma) &cat[ [4, -3]: n in [1..42] ];
[ n eq 1 select 4 else -Self(n-1)+1: n in [1..84] ];
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Klaus Brockhaus, Nov 22 2009
STATUS
approved