This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010727 Constant sequence: the all 7's sequence. 14
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) = A153466(n) mod 9. - Paul Curtz, Dec 27 2008 Continued fraction expansion of A176439.  - Bruno Berselli, Mar 15 2011 Final digit of 16^(2^n) + 1. That is, the last digit of every Fermat number F(n) is 7, where n >= 2. - Arkadiusz Wesolowski, Jul 28 2011 Decimal expansion of 7/9. - Arkadiusz Wesolowski, Sep 12 2011 LINKS Tanya Khovanova, Recursive Sequences INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1015 Christian Perfect, Integer sequence reviews on Numberphile (or vice versa), 2013. Index entries for linear recurrences with constant coefficients, signature (1). FORMULA G.f.: 7/(1-x).  - Bruno Berselli, Mar 15 2011 a(n) = 7. - Arkadiusz Wesolowski, Sep 12 2011 E.g.f.: 7*e^x. - Vincenzo Librandi, Jan 28 2012 MATHEMATICA ContinuedFraction[(7 + Sqrt@ 53)/2, 105] (* Or *) CoefficientList[ Series[7/(1 - x), {x, 0, 104}], x] (* Robert G. Wilson v *) PadRight[{}, 90, 7] (* or *) Table[7, {90}] (* Harvey P. Dale, Jun 05 2013 *) PROG (PARI) a(n)=7 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000012 (the all 1's sequence), A153466, A176439. Sequence in context: A112114 A031182 A106705 * A186684 A255910 A108689 Adjacent sequences:  A010724 A010725 A010726 * A010728 A010729 A010730 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 19:43 EST 2019. Contains 319335 sequences. (Running on oeis4.)