

A106705


8symbol substitution from X[n] Coxeter diagram with n=4.


0



1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 3, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Characteristic Polynomial n=4: x820*x6+128*x4320*x2+256 This Coxeter diagram behaves very much like odd even blocks or branches. This program shows the triangular nature of the output.


REFERENCES

X[n] substitutions of the Coxeter diagram from the McMullen article.
Curtis McMullen, Prym varieties and Teichmueller curves, May 04, 2005


LINKS

Table of n, a(n) for n=0..104.


FORMULA

1>{7}*n, 2>{5.6, 7}, 3>{6, 7, 8}, 4>{6}*n, 5>{2}*n, 6>{2, 3, 4}, 7>{1, 2, 3}, 8>{3}*n


MATHEMATICA

n0=8; n=4; s[1] = Table[If[i <= n0, 7, {}], {i, 1, n0}]; s[2] = {5, 6, 7}; s[ 3] = {6, 7, 8}; s[4] = Table[If[i <= n, 6, {}], {i, 1, n0}]; s[5] = Table[If[i <= n, 2, {}], {i, 1, n0}]; s[6] = {2, 3, 4}; s[7] = {1, 2, 3}; s[8] = Table[If[i <= n, 3, {}], {i, 1, n0}]; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] aa = Flatten[Table[p[n], {n, 0, 3}]]


CROSSREFS

Sequence in context: A269349 A112114 A031182 * A010727 A186684 A255910
Adjacent sequences: A106702 A106703 A106704 * A106706 A106707 A106708


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, May 09 2005


STATUS

approved



