login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106707 First entry of the vector (M^n)v, where M is the 2 X 2 matrix [[0,-1],[1,4]] and v is the column vector [0,1]. 3
0, -1, -4, -15, -56, -209, -780, -2911, -10864, -40545, -151316, -564719, -2107560, -7865521, -29354524, -109552575, -408855776, -1525870529, -5694626340, -21252634831, -79315912984, -296011017105, -1104728155436, -4122901604639, -15386878263120, -57424611447841 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Real Pisot roots (the eigenvalues of M): 2-sqrt(3)=0.267949, 2+sqrt(3)=3.73205.

LINKS

Table of n, a(n) for n=0..25.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,-1).

FORMULA

a(n)=first entry of v[n], where v[n]=Mv[n-1], M is the 2 X 2 matrix [[0, -1], [1, 4]] and v[0] is the column vector [0,1]. G.f.=-x/(1-4x+x^2). a(n)=4a(n-1)-a(n-2); a(0)=0, a(1)=-1.

a(n)=(1/6)*sqrt(3)*[2-sqrt(3)]^n-(1/6)*sqrt(3)*[2+sqrt(3)]^n, with n>=0 [From Paolo P. Lava, Oct 06 2008]

MAPLE

a[0]:=0: a[1]:=-1: for n from 2 to 27 do a[n]:=4*a[n-1]-a[n-2] od: seq(a[n], n=0..27);

MATHEMATICA

M = {{0, -1}, {1, 4}} v[1] = {0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}]

CROSSREFS

Cf. A001076, A001353.

Sequence in context: A001353 * A125905 A195503 A010905 A026030 A047038

Adjacent sequences:  A106704 A106705 A106706 * A106708 A106709 A106710

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, May 30 2005

EXTENSIONS

Edited by N. J. A. Sloane, Apr 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 19:49 EST 2017. Contains 282507 sequences.