login
A106709
Expansion of g.f. -2*x/(1 - 5*x + 2*x^2).
3
0, -2, -10, -46, -210, -958, -4370, -19934, -90930, -414782, -1892050, -8630686, -39369330, -179585278, -819187730, -3736768094, -17045465010, -77753788862, -354678014290, -1617882493726, -7380056440050, -33664517212798, -153562473183890, -700483331493854
OFFSET
0,2
COMMENTS
Let T(n,k) denote the k-th element of row n of Stern's triangle (see A337277). Then b(n) = Sum_k T(n,k)*T(n,k+1) gives the present sequence (without the signs). - N. J. A. Sloane, Nov 19 2020
LINKS
Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. Also American Mathematical Monthly 127.2 (2020): 99-111.
FORMULA
a(n) = -2*A107839(n-1), n>0.
a(n) = first entry of v(n), where v(n) = M*v(n-1), M is the 2 X 2 matrix ({0, -2}, {1, 5}) and v(0) is the column vector (0, 1).
G.f.: -2*x/(1-5*x+2*x^2). - Alois P. Heinz, Nov 26 2020
a(n) = -sqrt(2)^(n+1)*ChebyshevU(n-1, 5/(2*sqrt(2))). - G. C. Greubel, Sep 10 2021
MAPLE
a:= n-> (<<0|-2>, <1|5>>^n)[1, 2]:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 19 2020
MATHEMATICA
LinearRecurrence[{5, -2}, {0, -2}, 41] (* G. C. Greubel, Sep 10 2021 *)
PROG
(Magma) I:=[0, -2]; [n le 2 select I[n] else 5*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Sep 10 2021
(Sage) [-round(sqrt(2)^(n+1)*chebyshev_U(n-1, 5/(2*sqrt(2)))) for n in (0..40)] # G. C. Greubel, Sep 10 2021
CROSSREFS
Sequence in context: A080643 A032389 A290923 * A204091 A221196 A137193
KEYWORD
sign,easy,less
AUTHOR
Roger L. Bagula, May 30 2005
EXTENSIONS
Edited by N. J. A. Sloane, Apr 30 2006
New name by G. C. Greubel, Sep 10 2021
STATUS
approved