The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106709 First entry of the vector (M^n)v, where M is the 2 X 2 matrix [[0,-2],[1,5]] and v is the column vector [0,1]. 2
 0, -2, -10, -46, -210, -958, -4370, -19934, -90930, -414782, -1892050, -8630686, -39369330, -179585278, -819187730, -3736768094, -17045465010, -77753788862, -354678014290, -1617882493726, -7380056440050, -33664517212798, -153562473183890, -700483331493854 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Real Pisot roots (the eigenvalues of M): 0.438447, 4.56155. Let t(n,k) denote the k-th element of row n of Stern's triangle (see A337277). Then b(n) = Sum_k T(n,k)*T(n,k+1) gives the present sequence (without the signs). - N. J. A. Sloane, Nov 19 2020 LINKS Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. Also American Mathematical Monthly 127.2 (2020): 99-111. Index entries for linear recurrences with constant coefficients, signature (5,-2). FORMULA a(n)=first entry of v[n], where v[n]=Mv[n-1], M is the 2 X 2 matrix [[0, -2], [1, 5]] and v is the column vector [0,1]. G.f.: -2*x/(2*x^2-5*x+1). - Alois P. Heinz, Nov 26 2020 MAPLE with(linalg): M:=matrix(2, 2, [0, -2, 1, 5]): v:=matrix(2, 1, [0, 1]): for n from 1 to 22 do v[n]:=multiply(M, v[n-1]) od: seq(v[n][1, 1], n=0..22); # second Maple program: a:= n-> (<<0|-2>, <1|5>>^n)[1, 2]: seq(a(n), n=0..25);  # Alois P. Heinz, Nov 19 2020 MATHEMATICA M = {{0, -2}, {1, 5}} v = {0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][]], {n, 1, 50}] CROSSREFS Equals -2*A107839(n-1), n>0. Cf. A337277. Sequence in context: A080643 A032389 A290923 * A204091 A221196 A137193 Adjacent sequences:  A106706 A106707 A106708 * A106710 A106711 A106712 KEYWORD sign AUTHOR Roger L. Bagula, May 30 2005 EXTENSIONS Edited by N. J. A. Sloane, Apr 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 14:09 EDT 2021. Contains 343650 sequences. (Running on oeis4.)