The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290923 p-INVERT of the positive integers, where p(S) = 1 - 2*S - 2*S^2. 3
 2, 10, 46, 208, 938, 4230, 19078, 86048, 388106, 1750490, 7895302, 35610480, 160615298, 724429270, 3267420814, 14737172032, 66469626002, 299800475370, 1352201455582, 6098885514512, 27508034668634, 124070532153830, 559600027205398, 2523985228499040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A290890 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6, -8, 6, -1) FORMULA G.f.: (2 (1 - x + x^2))/(1 - 6 x + 8 x^2 - 6 x^3 + x^4). a(n) = 6*a(n-1) - 8*a(n-2) + 6*a(n-3) - a(n-4). MATHEMATICA z = 60; s = x/(1 - x)^2; p = 1 - 2 s - 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290923 *) u/2   (* A290924 *) CROSSREFS Cf. A000027, A033453, A290890. Sequence in context: A181294 A080643 A032389 * A106709 A204091 A221196 Adjacent sequences:  A290920 A290921 A290922 * A290924 A290925 A290926 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 19:46 EDT 2021. Contains 343951 sequences. (Running on oeis4.)