login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181294
Number of 0's in all 2-compositions of n. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
2
0, 2, 10, 46, 198, 816, 3264, 12776, 49192, 186976, 703328, 2623072, 9712864, 35746816, 130873088, 476961920, 1731331200, 6262393344, 22580421120, 81188953600, 291176175104, 1041867493376, 3720118018048, 13257657264128
OFFSET
0,2
COMMENTS
a(n)=Sum(A181293(n,k),k=0..n).
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
FORMULA
G.f. = 2z(1-z)^3/(1-4z+2z^2)^2.
a(n) = 2*A181331(n). - Emeric Deutsch, Oct 13 2010
EXAMPLE
a(2)=10 because the 2-compositions of 2, written as (top row / bottom row), are (1/1),(0/2),(2/0),(1,0/0,1),(0,1/1,0),(1,1/0,0),(0,0/1,1), having 0 + 1 + 1 + 2 + 2 + 2 + 2 = 10 zeros.
MAPLE
g := 2*z*(1-z)^3/(1-4*z+2*z^2)^2: gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 25);
CROSSREFS
Sequence in context: A212387 A191813 A360412 * A080643 A032389 A290923
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 12 2010
STATUS
approved