login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181297
Triangle read by rows: T(n,k) is the number of 2-compositions of n having k even entries (0<=k<=n) A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
3
1, 0, 2, 1, 0, 6, 0, 8, 0, 16, 3, 0, 35, 0, 44, 0, 28, 0, 132, 0, 120, 8, 0, 160, 0, 460, 0, 328, 0, 92, 0, 748, 0, 1528, 0, 896, 21, 0, 642, 0, 3117, 0, 4916, 0, 2448, 0, 290, 0, 3552, 0, 12062, 0, 15456, 0, 6688, 55, 0, 2380, 0, 17119, 0, 44318, 0, 47760, 0, 18272, 0, 888, 0
OFFSET
0,3
COMMENTS
The sum of entries in row n is A003480(n).
T(2n-1,0)=0.
T(2n,0)=A000045(2n) (Fibonacci numbers).
T(n,k)=0 if n and k have opposite parities.
T(n,n)=A002605(n+1).
Sum(k*T(n,k),k=0..n)=A181298.
For the statistics "number of odd entries" see A181295.
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
FORMULA
G.f.=G(t,z)=(1-z^2)^2/(1-3z^2+z^4-2sz-2s^2*z^2+s^2*z^4).
The g.f. H(t,s,z), where z marks the size of the 2-composition and t (s) marks the number of odd (even) entries, is H=1/(1-h), where h=z(t+sz)(2s+tz-sz^2)/(1-z^2)^2.
EXAMPLE
T(2,2)=6 because we have (0 / 2), (2 / 0), (1,0 / 0,1), (0,1 / 1,0), (1,1 / 0,0), (0,0 / 1,1) (the 2-compositions are written as (top row / bottom row).
Triangle starts:
1;
0,2;
1,0,6;
0,8,0,16;
3,0,35,0,44;
MAPLE
G := (1-z^2)^2/(1-3*z^2+z^4-2*s*z-2*s^2*z^2+s^2*z^4): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 11 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 11 do seq(coeff(P[n], s, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 12 2010
STATUS
approved