login
A137477
A triangular sequence of coefficients from the inverse substitution of the spherical Bessel polynomial recursion: B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and substitution x->1/y.
1
1, 0, -2, -1, 0, 6, 0, 4, 0, -24, 1, 0, -26, 0, 120, 0, -6, 0, 156, 0, -720, -1, 0, 68, 0, -1212, 0, 5040, 0, 8, 0, -544, 0, 9696, 0, -40320, 1, 0, -140, 0, 6108, 0, -92304, 0, 362880, 0, -10, 0, 1400, 0, -61080, 0, 923040, 0, -3628800
OFFSET
1,3
COMMENTS
Row sums are {1, -2, 5, -20, 95, -570, 3895, -31160, 276545, -2765450, 30143405, ...}.
LINKS
FORMULA
B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and the substitution x -> 1/y.
EXAMPLE
Triangle begins with:
1;
0, -2;
-1, 0, 6;
0, 4, 0, -24;
1, 0, -26, 0, 120;
0, -6, 0, 156, 0, -720;
-1, 0, 68, 0, -1212, 0, 5040;
0, 8, 0, -544, 0, 9696, 0, -40320;
1, 0, -140, 0, 6108, 0, -92304, 0, 362880;
MATHEMATICA
k = 1;
B[x, -1] = 0; B[x, 0] = 1;
B[x_, n_]:= B[x, n]= (-2/x)*B[x, n-1] -(k^2 -(n*(n-1)/x^2))*B[x, n-2];
Table[ExpandAll[B[x, n]/.x->1/y], {n, 0, 10}] (* polynomials *)
Table[CoefficientList[B[x, n] /. x -> 1/y, y], {n, 0, 10}]//Flatten
Table[Apply[Plus, CoefficientList[B[x, n] /. x -> 1/y, y]], {n, 0, 10}] (* row sums *)
CROSSREFS
Sequence in context: A241218 A266904 A299198 * A181297 A196776 A336345
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Apr 21 2008
STATUS
approved