login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137477
A triangular sequence of coefficients from the inverse substitution of the spherical Bessel polynomial recursion: B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and substitution x->1/y.
1
1, 0, -2, -1, 0, 6, 0, 4, 0, -24, 1, 0, -26, 0, 120, 0, -6, 0, 156, 0, -720, -1, 0, 68, 0, -1212, 0, 5040, 0, 8, 0, -544, 0, 9696, 0, -40320, 1, 0, -140, 0, 6108, 0, -92304, 0, 362880, 0, -10, 0, 1400, 0, -61080, 0, 923040, 0, -3628800
OFFSET
1,3
COMMENTS
Row sums are {1, -2, 5, -20, 95, -570, 3895, -31160, 276545, -2765450, 30143405, ...}.
LINKS
FORMULA
B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and the substitution x -> 1/y.
EXAMPLE
Triangle begins with:
1;
0, -2;
-1, 0, 6;
0, 4, 0, -24;
1, 0, -26, 0, 120;
0, -6, 0, 156, 0, -720;
-1, 0, 68, 0, -1212, 0, 5040;
0, 8, 0, -544, 0, 9696, 0, -40320;
1, 0, -140, 0, 6108, 0, -92304, 0, 362880;
MATHEMATICA
k = 1;
B[x, -1] = 0; B[x, 0] = 1;
B[x_, n_]:= B[x, n]= (-2/x)*B[x, n-1] -(k^2 -(n*(n-1)/x^2))*B[x, n-2];
Table[ExpandAll[B[x, n]/.x->1/y], {n, 0, 10}] (* polynomials *)
Table[CoefficientList[B[x, n] /. x -> 1/y, y], {n, 0, 10}]//Flatten
Table[Apply[Plus, CoefficientList[B[x, n] /. x -> 1/y, y]], {n, 0, 10}] (* row sums *)
CROSSREFS
Sequence in context: A241218 A266904 A299198 * A181297 A196776 A336345
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Apr 21 2008
STATUS
approved