OFFSET
1,3
COMMENTS
Row sums are {1, -2, 5, -20, 95, -570, 3895, -31160, 276545, -2765450, 30143405, ...}.
LINKS
G. C. Greubel, Table of n, a(n) for the first 25 rows, flattened
Eric Weisstein's World of Mathematics, Spherical Bessel Differential Equation
FORMULA
B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and the substitution x -> 1/y.
EXAMPLE
Triangle begins with:
1;
0, -2;
-1, 0, 6;
0, 4, 0, -24;
1, 0, -26, 0, 120;
0, -6, 0, 156, 0, -720;
-1, 0, 68, 0, -1212, 0, 5040;
0, 8, 0, -544, 0, 9696, 0, -40320;
1, 0, -140, 0, 6108, 0, -92304, 0, 362880;
MATHEMATICA
k = 1;
B[x, -1] = 0; B[x, 0] = 1;
B[x_, n_]:= B[x, n]= (-2/x)*B[x, n-1] -(k^2 -(n*(n-1)/x^2))*B[x, n-2];
Table[ExpandAll[B[x, n]/.x->1/y], {n, 0, 10}] (* polynomials *)
Table[CoefficientList[B[x, n] /. x -> 1/y, y], {n, 0, 10}]//Flatten
Table[Apply[Plus, CoefficientList[B[x, n] /. x -> 1/y, y]], {n, 0, 10}] (* row sums *)
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Apr 21 2008
STATUS
approved