login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangular sequence of coefficients from the inverse substitution of the spherical Bessel polynomial recursion: B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and substitution x->1/y.
1

%I #20 Nov 28 2024 13:27:32

%S 1,0,-2,-1,0,6,0,4,0,-24,1,0,-26,0,120,0,-6,0,156,0,-720,-1,0,68,0,

%T -1212,0,5040,0,8,0,-544,0,9696,0,-40320,1,0,-140,0,6108,0,-92304,0,

%U 362880,0,-10,0,1400,0,-61080,0,923040,0,-3628800

%N A triangular sequence of coefficients from the inverse substitution of the spherical Bessel polynomial recursion: B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and substitution x->1/y.

%C Row sums are {1, -2, 5, -20, 95, -570, 3895, -31160, 276545, -2765450, 30143405, ...}.

%H G. C. Greubel, <a href="/A137477/b137477.txt">Table of n, a(n) for the first 25 rows, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SphericalBesselDifferentialEquation.html">Spherical Bessel Differential Equation</a>

%F B(x, n) = (-2/x)*B(x, n-1) - (k^2 - (n*(n-1)/x^2))*B(x, n-2), with k=1 and the substitution x -> 1/y.

%e Triangle begins with:

%e 1;

%e 0, -2;

%e -1, 0, 6;

%e 0, 4, 0, -24;

%e 1, 0, -26, 0, 120;

%e 0, -6, 0, 156, 0, -720;

%e -1, 0, 68, 0, -1212, 0, 5040;

%e 0, 8, 0, -544, 0, 9696, 0, -40320;

%e 1, 0, -140, 0, 6108, 0, -92304, 0, 362880;

%t k = 1;

%t B[x, -1] = 0; B[x, 0] = 1;

%t B[x_, n_]:= B[x, n]= (-2/x)*B[x, n-1] -(k^2 -(n*(n-1)/x^2))*B[x, n-2];

%t Table[ExpandAll[B[x, n]/.x->1/y], {n, 0, 10}] (* polynomials *)

%t Table[CoefficientList[B[x, n] /. x -> 1/y, y], {n, 0, 10}]//Flatten

%t Table[Apply[Plus, CoefficientList[B[x, n] /. x -> 1/y, y]], {n, 0, 10}] (* row sums *)

%K tabl,sign

%O 1,3

%A _Roger L. Bagula_, Apr 21 2008