OFFSET
0,3
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
E.g.f. of column k: (Product_{j>k} exp(x^j/j!))^2.
T(0,k) = 1, T(1,k) = T(2,k) = ... = T(k,k) = 0 and T(n,k) = 2 * Sum_{j=k..n-1} binomial(n-1,j)*T(n-1-j,k) for n > k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 0, 0, 0, 0, 0, 0, ...
6, 2, 0, 0, 0, 0, 0, ...
22, 2, 2, 0, 0, 0, 0, ...
94, 14, 2, 2, 0, 0, 0, ...
454, 42, 2, 2, 2, 0, 0, ...
2430, 222, 42, 2, 2, 2, 0, ...
PROG
(PARI) {T(n, k) = n!*polcoef(prod(j=k+1, n, exp((x^j+x*O(x^n))/j!))^2, n)}
(Ruby)
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << 2 * (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
ary
end
def A336345(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A336345(20)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 20 2020
STATUS
approved