login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336345
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2 * (exp(x) - Sum_{j=0..k} x^j/j!)).
1
1, 1, 2, 1, 0, 6, 1, 0, 2, 22, 1, 0, 0, 2, 94, 1, 0, 0, 2, 14, 454, 1, 0, 0, 0, 2, 42, 2430, 1, 0, 0, 0, 2, 2, 222, 14214, 1, 0, 0, 0, 0, 2, 42, 1066, 89918, 1, 0, 0, 0, 0, 2, 2, 142, 6078, 610182, 1, 0, 0, 0, 0, 0, 2, 2, 366, 36490, 4412798, 1, 0, 0, 0, 0, 0, 2, 2, 142, 3082, 238046, 33827974
OFFSET
0,3
LINKS
FORMULA
E.g.f. of column k: (Product_{j>k} exp(x^j/j!))^2.
T(0,k) = 1, T(1,k) = T(2,k) = ... = T(k,k) = 0 and T(n,k) = 2 * Sum_{j=k..n-1} binomial(n-1,j)*T(n-1-j,k) for n > k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 0, 0, 0, 0, 0, 0, ...
6, 2, 0, 0, 0, 0, 0, ...
22, 2, 2, 0, 0, 0, 0, ...
94, 14, 2, 2, 0, 0, 0, ...
454, 42, 2, 2, 2, 0, 0, ...
2430, 222, 42, 2, 2, 2, 0, ...
PROG
(PARI) {T(n, k) = n!*polcoef(prod(j=k+1, n, exp((x^j+x*O(x^n))/j!))^2, n)}
(Ruby)
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << 2 * (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
ary
end
def A336345(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A336345(20)
CROSSREFS
Columns k=0..4 give A001861, A194689, A339014, A339017, A339027.
Main diagonal gives A000007.
Cf. A293024.
Sequence in context: A137477 A181297 A196776 * A157982 A119275 A129462
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 20 2020
STATUS
approved