login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336347
Least prime factor of 44745755^4*2^(4n+2) + 1.
2
13, 101, 29, 13, 39877, 41, 13, 37, 18661, 13, 41, 73, 13, 5719237, 144341, 13, 29, 89, 13, 353, 41, 13, 64450569241, 29, 13, 37, 101, 13, 89, 53, 13, 113, 313, 13, 37, 41, 13, 29, 73, 13, 41, 181, 13, 37, 29, 13, 857, 73, 13, 389, 41, 13, 37
OFFSET
0,1
COMMENTS
There are k such that k*2^m + 1 is not prime for any m (then k is called a Sierpiński number). Erdős once conjectured that for such a k, the smallest prime factor of k*2^m + 1 would be bounded as m tends to infinitiy. The proven Sierpiński number k=44745755^4 is thought to be the first counterexample to this conjecture.
This sequence is either unbounded (in which case 44745755^4 is in fact a counterexample) or periodic.
a(229) <= 3034663491871541. - Chai Wah Wu, Aug 09 2020
LINKS
M. Filaseta et al., On powers associated with Sierpiński numbers, Riesel numbers and Polignac's conjecture, Journal of Number Theory, Volume 128, Issue 7 (July 2008), pp. 1916-1940.
Anatoly S. Izotov, A Note on Sierpinski Numbers, Fibonacci Quarterly (1995), pp. 206-207.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeppe Stig Nielsen, Jul 19 2020
STATUS
approved