login
A367554
a(n) is the number of 2n-regular circulant graphs of order 53.
2
1, 1, 13, 100, 578, 2530, 8866, 25300, 60115, 120175, 204347, 297160, 371516, 400024, 371516, 297160, 204347, 120175, 60115, 25300, 8866, 2530, 578, 100, 13, 1, 1
OFFSET
0,3
LINKS
Brian Alspach and Marni Mishna, Enumeration of Cayley graphs and digraphs, Discr. Math., 256 (2002), 527-539.
Marni Mishna, Home page.
Marni Mishna, Publications.
Marni Mishna, Cayley Graph Enumeration, Master's Thesis, Simon Fraser University, 2000. See p. 16 (which is p. 24 in the pdf).
FORMULA
Sum_n a(n) = 2581428 = A049287(53) = A285620(53) = A000031((53-1)/2). - Andrey Zabolotskiy, Nov 22 2023
PROG
(SageMath)
def a(k, p):
return (2/(p-1)) * sum(euler_phi(d) * binomial((p-1)/(2*d), k/(2*d)) for d in divisors(gcd(k, p-1)/2)) # see Mishna; beware the missing prefactor (2/(p-1))
print([a(2*n, 53) for n in range(27)]) # Andrey Zabolotskiy, Nov 22 2023
(Python)
from math import gcd, comb
from sympy import totient, divisors
def A367554(n): return sum(totient(d)*comb(26//d, n//d) for d in divisors(gcd(n, 26), generator=True))//26 # Chai Wah Wu, Nov 23 2023
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Andrey Zabolotskiy, Nov 22 2023
STATUS
approved