login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367555
Number of zeros (or ones) in each row of the iterates of the Christmas tree pattern map (A367508).
4
1, 1, 3, 3, 3, 6, 2, 6, 2, 6, 6, 10, 5, 5, 10, 5, 5, 10, 5, 10, 10, 15, 3, 9, 3, 9, 9, 15, 3, 9, 3, 9, 9, 15, 3, 9, 9, 15, 9, 15, 15, 21, 7, 7, 14, 7, 7, 14, 7, 14, 14, 21, 7, 7, 14, 7, 7, 14, 7, 14, 14, 21, 7, 7, 14, 7, 14, 14, 21, 7, 14, 14, 21, 14, 21, 21, 28
OFFSET
1,3
COMMENTS
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..13494 (first 15 orders).
EXAMPLE
The following diagram shows the first 4 tree pattern orders, along with the corresponding number of zeros = number of ones.
.
Order 1: |
0 1 | 1
|
Order 2: |
10 | 1
00 01 11 | 3
|
Order 3: |
100 101 | 3
010 110 | 3
000 001 011 111 | 6
|
Order 4: |
1010 | 2
1000 1001 1011 | 6
1100 | 2
0100 0101 1101 | 6
0010 0110 1110 | 6
0000 0001 0011 0111 1111 | 10
.
MATHEMATICA
With[{imax=9}, Map[Total, NestList[Map[Delete[{If[Length[#]>1, Rest[#], Nothing], Join[{First[#]}, #+1]}, 0]&], {{0, 1}}, imax-1], {2}]] (* Generates terms up to order 9 *)
PROG
(Python)
from itertools import islice
from functools import reduce
def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
def agen(): # generator of terms
R = [["0", "1"]]
while R:
r = R.pop(0)
yield sum(e.count("1") for e in r)
if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
print(list(islice(agen(), 77))) # Michael S. Branicky, Nov 23 2023
CROSSREFS
Sequence in context: A261450 A100026 A350537 * A100049 A261926 A158315
KEYWORD
nonn,base
AUTHOR
Paolo Xausa, Nov 22 2023
STATUS
approved