|
|
A285620
|
|
Number of circulant graphs on n vertices up to Cayley isomorphism.
|
|
4
|
|
|
1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 88, 36, 192, 60, 336, 200, 416, 188, 1344, 424, 1400, 944, 3104, 1182, 8768, 2192, 8784, 6768, 16460, 11144, 46848, 14602, 58288, 44424, 138432, 52488, 355200, 99880, 432576, 351712, 762608, 364724, 2151936, 798960
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Two circulant graphs are Cayley isomorphic if there is a d, which is necessarily prime to n, that transforms through multiplication modulo n the step values of one graph into those of the other. For squarefree n this is the only way that two circulant graphs can be isomorphic (See A049287).
|
|
LINKS
|
|
|
MATHEMATICA
|
IsLeastPoint[s_, f_] := Module[{t = f[s]}, While[t > s, t=f[t]]; Boole[s == t]];
c[n_, k_] := Sum[IsLeastPoint[u, Abs[Mod[#*k + Quotient[n, 2], n] - Quotient[n, 2]]&], {u, 1, n/2}];
a[n_] := If[n < 3, n, Sum[If[GCD[k, n] == 1, 2^c[n, k], 0]*2/EulerPhi[n], {k, 1, n/2}]];
|
|
PROG
|
(PARI)
IsLeastPoint(s, f)={my(t=f(s)); while(t>s, t=f(t)); s==t}
C(n, k)=sum(u=1, n/2, IsLeastPoint(u, v->abs((v*k+n\2)%n-n\2)));
a(n)=if(n<3, n, sum(k=1, n/2, if (gcd(k, n)==1, 2^C(n, k), 0))*2/eulerphi(n));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|