login
A191813
G.f. satisfies: A(x) = Sum_{n>=0} x^(n^2)*A(x)^(n^3).
1
1, 1, 1, 1, 2, 10, 46, 166, 504, 1425, 4256, 14594, 55783, 220903, 873199, 3436817, 13569556, 53929244, 215352055, 861477251, 3446980935, 13792641374, 55203566064, 221112089602, 887538377345, 3580304912835, 14573568107348
OFFSET
0,5
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 10*x^5 + 46*x^6 + 166*x^7 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^4*A(x)^8 + x^9*A(x)^27 + x^16*A(x)^64 + x^25*A(x)^125 + x^36*A(x)^216 +...+ x^(n^2)*A(x)^(n^3) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^(m^2)*(A+x*O(x^n))^(m^3))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 17 2011
STATUS
approved