login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157134
G.f. satisfies: A(x) = Sum_{n>=0} x^(n^2) * A(x)^n.
6
1, 1, 1, 1, 2, 4, 7, 11, 18, 33, 63, 117, 211, 383, 713, 1348, 2547, 4793, 9039, 17165, 32785, 62761, 120243, 230768, 444119, 857015, 1656931, 3207990, 6219994, 12079544, 23496417, 45767352, 89256038, 174269488, 340646238, 666604642
OFFSET
0,5
FORMULA
G.f. satisfies: A(x) = B(x/A(x)) where B(x) = A(x*B(x)) = g.f. of A157135,
where A157135(n) = [x^n] A(x)^(n+1)/(n+1) for n>=0,
and a(n) = [x^n] -1/B(x)^(n-1)/(n-1) for n>1.
From Paul D. Hanna, Apr 25 2010: (Start)
G.f. A(x) satisfies the continued fraction:
A(x) = 1/(1- x*A(x)/(1- (x^3-x)*A(x)/(1- x^5*A(x)/(1- (x^7-x^3)*A(x)/(1- x^9*A(x)/(1- (x^11-x^5)*A(x)/(1- x^13*A(x)/(1- (x^15-x^7)*A(x)/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
(End)
From Paul D. Hanna, May 05 2010: (Start)
Let A = g.f. A(x) at x=q, then A satisfies the q-series:
A = Sum_{n>=0} q^n*A^n*Product_{k=1..n} (1-q^(4k-3)*A)/(1-q^(4k-1)*A).
(End)
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 11*x^7 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 10*x^3 + 18*x^4 + 36*x^5 + 73*x^6 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 20*x^3 + 39*x^4 + 80*x^5 + 168*x^6 +...
where
A(x) = 1 + x*A(x) + x^4*A(x)^2 + x^9*A(x)^3 + x^16*A(x)^4 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, (A=sum(m=0, sqrtint(n), x^(m^2)*A^m))); polcoeff(A, n)}
CROSSREFS
Cf. A107595. [From Paul D. Hanna, Apr 25 2010]
Sequence in context: A000570 A239552 A023426 * A357932 A127926 A078513
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 24 2009
EXTENSIONS
Typo in data corrected by D. S. McNeil, Aug 17 2010
STATUS
approved