login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127926
G.f.: 1-q = Sum_{k>=0} a(k)*q^k*Faq(k+1,q), where Faq(n,q) is the q-factorial of n.
3
1, -1, 1, -2, 4, -7, 11, -18, 35, -76, 166, -358, 775, -1686, 3638, -7716, 16108, -33349, 69022, -143605, 301179, -636932, 1355855, -2896168, 6186750, -13183426, 27988755, -59197443, 124824911, -262699256, 552438175, -1162010894, 2446434685, -5156873960
OFFSET
0,4
LINKS
FORMULA
G.f.: 1-q = Sum_{k>=0} a(k)*q^k*Product_{i=1..k+1} (1-q^i)/(1-q).
EXAMPLE
Define Faq(n,q) = Product_{i=1..n} (1-q^i)/(1-q) for n>0, Faq(0,q)=1.
Then coefficients of q in a(k)*q^k*Faq(k+1,q) begin as follows:
k=0: 1;
k=1: .. -1, -1;
k=2: ....... 1, 2, 2,. 1;
k=3: ......... -2,-6,-10,-12,-10,. -6,. -2;
k=4: ............. 4, 16, 36, 60,. 80,. 88,.. 80, ...;
k=5: ................ -7,-35,-98,-203,-343, -497, ...;
k=6: .................... 11, 66, 220, 539, 1078, ...;
k=7: ....................... -18,-126,-486,-1368, ...;
k=8: ............................. 35, 280, 1225, ...;
k=9: ................................. -76, -684, ...;
k=10: ...................................... 166, ...;
Sums cancel down column j for j>1, leaving 1-q.
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(1-q- sum(k=0, n-1, a(k)*q^k*prod(j=1, k+1, (1-q^j)/(1-q+q*O(q^(n-k))))), n, q))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
First column of A179750. [From Mats Granvik, Jul 26 2010]
Cf. A129273.
Sequence in context: A023426 A157134 A357932 * A078513 A357210 A308871
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 06 2007
STATUS
approved