login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129273
G.f.: 1-q = Sum_{k>=0} a(k)*q^k * Faq(k+1,q)^2, where Faq(n,q) is the q-factorial of n.
2
1, -1, 2, -7, 26, -95, 344, -1256, 4654, -17470, 66234, -253192, 974992, -3778966, 14729200, -57683066, 226806148, -894791874, 3540105138, -14039128725, 55786507642, -222047783006, 885073034920, -3532110787193, 14110281656038
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, q-Factorial.
FORMULA
G.f.: 1-q = Sum_{k>=0} a(k)*q^k*{ Product_{i=1..k+1} (1-q^i)/(1-q) }^2.
EXAMPLE
Define Faq(n,q) = Product_{i=1..n} (1-q^i)/(1-q) for n>0, Faq(0,q)=1.
Then coefficients of q in a(k)*q^k * Faq(k+1,q)^2 begin as follows:
k=0: 1;
k=1: .. -1, -2,-1;
k=2: ....... 2, 8, 16,.. 20,.. 16,... 8,.... 2;
k=3: ......... -7,-42, -133, -294, -497,. -672, ...;
k=4: ............. 26,. 208,. 884, 2652,. 6266, ...;
k=5: .................. -95, -950,-5035,-18810, ...;
k=6: ........................ 344, 4128, 26144, ...;
k=7: ............................ -1256,-17584, ...;
k=8: .................................... 4654, ...;
Sums cancel along column j for j>1, leaving 1-q.
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(1-q- sum(k=0, n-1, a(k)*q^k*prod(j=1, k+1, (1-q^j)/ (1-q+q*O(q^(n-k))))^2), n, q))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A127926.
Sequence in context: A087448 A289449 A188860 * A055988 A371798 A275013
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 07 2007
STATUS
approved