Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 10 2023 09:16:50
%S 1,-1,2,-7,26,-95,344,-1256,4654,-17470,66234,-253192,974992,-3778966,
%T 14729200,-57683066,226806148,-894791874,3540105138,-14039128725,
%U 55786507642,-222047783006,885073034920,-3532110787193,14110281656038
%N G.f.: 1-q = Sum_{k>=0} a(k)*q^k * Faq(k+1,q)^2, where Faq(n,q) is the q-factorial of n.
%H Paul D. Hanna, <a href="/A129273/b129273.txt">Table of n, a(n) for n = 0..420</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a>.
%F G.f.: 1-q = Sum_{k>=0} a(k)*q^k*{ Product_{i=1..k+1} (1-q^i)/(1-q) }^2.
%e Define Faq(n,q) = Product_{i=1..n} (1-q^i)/(1-q) for n>0, Faq(0,q)=1.
%e Then coefficients of q in a(k)*q^k * Faq(k+1,q)^2 begin as follows:
%e k=0: 1;
%e k=1: .. -1, -2,-1;
%e k=2: ....... 2, 8, 16,.. 20,.. 16,... 8,.... 2;
%e k=3: ......... -7,-42, -133, -294, -497,. -672, ...;
%e k=4: ............. 26,. 208,. 884, 2652,. 6266, ...;
%e k=5: .................. -95, -950,-5035,-18810, ...;
%e k=6: ........................ 344, 4128, 26144, ...;
%e k=7: ............................ -1256,-17584, ...;
%e k=8: .................................... 4654, ...;
%e Sums cancel along column j for j>1, leaving 1-q.
%o (PARI) {a(n)=if(n==0,1,polcoeff(1-q- sum(k=0,n-1,a(k)*q^k*prod(j=1,k+1,(1-q^j)/ (1-q+q*O(q^(n-k))))^2),n,q))}
%o for(n=0,25,print1(a(n),", "))
%Y Cf. A127926.
%K sign
%O 0,3
%A _Paul D. Hanna_, Apr 07 2007