login
A371798
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-2*k-1,n-2*k).
5
1, 1, 2, 7, 26, 96, 356, 1331, 5014, 19006, 72412, 277058, 1063856, 4097510, 15823432, 61245987, 237536326, 922906150, 3591500972, 13996328322, 54614894396, 213360770840, 834409399672, 3266370155262, 12797894251276, 50184309630196, 196936674150296
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] 1/((1+x^2) * (1-x)^n).
a(n) = binomial(2*n-1, n)*hypergeom([1, (1-n)/2, -n/2], [1/2-n, 1-n], -1). - Stefano Spezia, Apr 06 2024
a(n) ~ 2^(2*n+1) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 07 2024
MATHEMATICA
Table[Sum[(-1)^k Binomial[2n-2k-1, n-2k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Oct 31 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-2*k-1, n-2*k));
CROSSREFS
Sequence in context: A188860 A129273 A055988 * A275013 A278351 A001075
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 06 2024
STATUS
approved