login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120305
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * (i+j)!/(i!j!).
14
1, 1, 3, 9, 31, 111, 407, 1513, 5679, 21471, 81643, 311895, 1196131, 4602235, 17757183, 68680169, 266200111, 1033703055, 4020716123, 15662273839, 61092127491, 238582873475, 932758045123, 3650336341239, 14298633670931
OFFSET
0,3
COMMENTS
p divides a((p+1)/2) for prime p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, ... (A033200: primes congruent to {1, 3} mod 8; or, odd primes of the form x^2 + 2*y^2).
p divides a((p-3)/2) for prime p = 17, 41, 73, 89, 97, 113, 137, ... (A007519: primes of the form 8n+1).
Essentially the same as partial sums of A072547. - Seiichi Manyama, Jan 30 2023
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1664 (terms 0..200 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{j=0..n} Sum_{i=0..n} (-1)^(i+j)*(i+j)!/(i!j!).
Recurrence: 2*n*(3*n-5)*a(n) = 3*(9*n^2 - 19*n + 8)*a(n-1) - 3*(n-1)*(3*n-4)*a(n-2) - 2*(2*n-3)*(3*n-2)*a(n-3). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 4^(n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 13 2013
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( (1 - x *c(x))/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023
From Seiichi Manyama, Apr 06 2024: (Start)
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k-1,n-3*k).
a(n) = [x^n] 1/((1+x^3) * (1-x)^n). (End)
MATHEMATICA
Table[Sum[Sum[(-1)^(i+j)*(i+j)!/(i!j!), {i, 0, n}], {j, 0, n}], {n, 0, 50}]
PROG
(PARI) a(n) = sum(i=0, n, sum(j=0, n, (-1)^(i+j) * (i+j)!/(i!*j!))); \\ Michel Marcus, Apr 02 2019
(PARI) a(n) = sum(i=0, 2*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^2, i)); \\ Seiichi Manyama, May 20 2019
(PARI) my(N=30, x='x+O('x^N)); Vec((1+sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x)))) \\ Seiichi Manyama, Jan 30 2023
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 14 2006
STATUS
approved