login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120307
Inverse determinant of n X n matrix M[i,j] = i*j/(i+j-1).
1
1, 3, 60, 10500, 18522000, 359400888000, 81408613942656000, 224737840779305293440000, 7812628980363223707442752000000, 3508978524227146242839564498172672000000
OFFSET
1,2
FORMULA
a(n) = 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]]. a(n+1)/a(n) = A000891[n] = (2n)!(2n+1)! / (n! (n+1)!)^2 = (2n+1)*CatalanNumber[n]^2 = (2n+1)*A000108[n]^2 = C(2n+1,n+1)*CatalanNumber[n] = A001700[n]*A000108[n].
a(n) = A163085(2*n)/(2*n)!. - Peter Luschny, Sep 18 2012
MATHEMATICA
Table[ 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]], {n, 1, 12}]
PROG
(Sage)
def A120307(n): return A163085(2*n)/factorial(2*n)
[A120307(n) for n in (1..10)] # Peter Luschny, Sep 18 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 15 2006
STATUS
approved