This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120304 Catalan number minus 2, or ((2n)!/n!/(n+1)! - 2). 10
 -1, -1, 0, 3, 12, 40, 130, 427, 1428, 4860, 16794, 58784, 208010, 742898, 2674438, 9694843, 35357668, 129644788, 477638698, 1767263188, 6564120418, 24466267018, 91482563638, 343059613648, 1289904147322, 4861946401450, 18367353072150, 69533550916002, 263747951750358 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Prime p divides a(p). Prime p divides a(p+1) for p>2. Prime p divides a(p-1)/2) for p=13,17,29,37,41,53,61,73,89,97,101,109,113..=A002144[n] except 5. Pythagorean primes: primes of form 4n+1. Also A002313[n] except 2,5. Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. p^2 divides a(p^2) and a(p^2+1) for all prime p. For n>=2 number of Dyck paths of semilength n such that all four consecutive step patterns of length 2 occur at least once; a(3)=3: UDUUDD, UUDDUD, UUDUDD.  For each n two paths do not satisfy the condition: U^{n}D^{n} and (UD)^n. - Alois P. Heinz, Jun 13 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178. Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2. [The sequence here begins 1, 1, 1, 3, 12, 40, 130, 427, 1428, 4860,...] FORMULA a(n) = (2n)!/n!/(n+1)! - 2. a(n) = A000108(n) - 2. (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, May 30 2014 MAPLE a:= n-> binomial(2*n, n)/(n+1) -2: seq(a(n), n=0..30);  # Alois P. Heinz, Jun 13 2014 MATHEMATICA Table[(2n)!/n!/(n+1)!-2, {n, 0, 30}] PROG (Mupad) combinat::dyckWords::count(n)-2 \$ n = 0..38; # Zerinvary Lajos, May 08 2008 CROSSREFS Cf. A000108, A002144, A002313, A003655. Cf. A243882, A243820. Sequence in context: A247002 A027991 * A289652 A026071 A102839 A050182 Adjacent sequences:  A120301 A120302 A120303 * A120305 A120306 A120307 KEYWORD sign AUTHOR Alexander Adamchuk, Jul 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.