login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120304
Catalan numbers minus 2.
11
-1, -1, 0, 3, 12, 40, 130, 427, 1428, 4860, 16794, 58784, 208010, 742898, 2674438, 9694843, 35357668, 129644788, 477638698, 1767263188, 6564120418, 24466267018, 91482563638, 343059613648, 1289904147322, 4861946401450, 18367353072150, 69533550916002, 263747951750358
OFFSET
0,4
COMMENTS
Prime p divides a(p). Prime p divides a(p+1) for p > 2. Prime p divides a((p-1)/2) for p = 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, ... = A002144(n) except 5. Pythagorean primes: primes of form 4n+1. Also A002313(n) except 2, 5. Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. p^2 divides a(p^2) and a(p^2+1) for all prime p.
For n >= 2, number of Dyck paths of semilength n such that all four consecutive step patterns of length 2 occur at least once; a(3)=3: UDUUDD, UUDDUD, UUDUDD. For each n two paths do not satisfy the condition: U^{n}D^{n} and (UD)^n. - Alois P. Heinz, Jun 13 2014
LINKS
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2. [The sequence here begins 1, 1, 1, 3, 12, 40, 130, 427, 1428, 4860, ...]
FORMULA
a(n) = A000108(n) - 2.
a(n) = (2n)!/(n!*(n+1)!) - 2.
(n+1)*a(n) + 2*(-3*n+1)*a(n-1) + (9*n-13)*a(n-2) + 2*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, May 30 2014
MAPLE
a:= n-> binomial(2*n, n)/(n+1) -2:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 13 2014
MATHEMATICA
Table[(2n)!/n!/(n+1)!-2, {n, 0, 30}]
CatalanNumber[Range[0, 30]]-2 (* Harvey P. Dale, May 03 2019 *)
PROG
(MuPAD) combinat::dyckWords::count(n)-2 $ n = 0..38; // Zerinvary Lajos, May 08 2008
(PARI) a(n) = binomial(2*n, n)/(n+1)-2; \\ Altug Alkan, Dec 17 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Alexander Adamchuk, Jul 13 2006
STATUS
approved