OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 31*x^5 + 111*x^6 + 415*x^7 + 1591*x^8 + 6229*x^9 + 24773*x^10 + 99793*x^11 + 406197*x^12 +...
such that the g.f. satisfies:
x/A(x) = 1 - A(x)*(1-A(x)^2)/(1-A(x)) + A(x)^3*(1-A(x)^3)/(1-A(x)) - A(x)^6*(1-A(x)^4)/(1-A(x)) + A(x)^10*(1-A(x)^5)/(1-A(x)) -+...
Let G(x) satisfy: G(A(x)) = x, then:
G(x) = x - (x^2 + x^3) + (x^4 + x^5 + x^6) - (x^7 + x^8 + x^9 + x^10) + (x^11 + x^12 + x^13 + x^14 + x^15) +...
PROG
(PARI) {a(n)=polcoeff(serreverse(x*sum(m=1, n, (-1)^(m-1)*x^(m*(m-1)/2)*(1-x^m)/(1-x)+x*O(x^n))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 06 2012
STATUS
approved