login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * (i+j)!/(i!j!).
14

%I #40 Apr 07 2024 17:43:24

%S 1,1,3,9,31,111,407,1513,5679,21471,81643,311895,1196131,4602235,

%T 17757183,68680169,266200111,1033703055,4020716123,15662273839,

%U 61092127491,238582873475,932758045123,3650336341239,14298633670931

%N a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * (i+j)!/(i!j!).

%C p divides a((p+1)/2) for prime p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, ... (A033200: primes congruent to {1, 3} mod 8; or, odd primes of the form x^2 + 2*y^2).

%C p divides a((p-3)/2) for prime p = 17, 41, 73, 89, 97, 113, 137, ... (A007519: primes of the form 8n+1).

%C Essentially the same as partial sums of A072547. - _Seiichi Manyama_, Jan 30 2023

%H Seiichi Manyama, <a href="/A120305/b120305.txt">Table of n, a(n) for n = 0..1664</a> (terms 0..200 from Vincenzo Librandi)

%F a(n) = Sum_{j=0..n} Sum_{i=0..n} (-1)^(i+j)*(i+j)!/(i!j!).

%F Recurrence: 2*n*(3*n-5)*a(n) = 3*(9*n^2 - 19*n + 8)*a(n-1) - 3*(n-1)*(3*n-4)*a(n-2) - 2*(2*n-3)*(3*n-2)*a(n-3). - _Vaclav Kotesovec_, Aug 13 2013

%F a(n) ~ 4^(n+1)/(9*sqrt(Pi*n)). - _Vaclav Kotesovec_, Aug 13 2013

%F G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( (1 - x *c(x))/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - _Seiichi Manyama_, Jan 30 2023

%F From _Seiichi Manyama_, Apr 06 2024: (Start)

%F a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k-1,n-3*k).

%F a(n) = [x^n] 1/((1+x^3) * (1-x)^n). (End)

%t Table[Sum[Sum[(-1)^(i+j)*(i+j)!/(i!j!),{i,0,n}],{j,0,n}],{n,0,50}]

%o (PARI) a(n) = sum(i=0, n, sum(j=0, n, (-1)^(i+j) * (i+j)!/(i!*j!))); \\ _Michel Marcus_, Apr 02 2019

%o (PARI) a(n) = sum(i=0, 2*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^2, i)); \\ _Seiichi Manyama_, May 20 2019

%o (PARI) my(N=30, x='x+O('x^N)); Vec((1+sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x)))) \\ _Seiichi Manyama_, Jan 30 2023

%Y Cf. A000108, A006134, A033200, A007519, A092785, A307354.

%Y Cf. A072547, A371798.

%K nonn

%O 0,3

%A _Alexander Adamchuk_, Jul 14 2006