The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107595 G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2). 17
1, 1, 2, 7, 31, 158, 884, 5292, 33385, 219797, 1500449, 10573815, 76688602, 571232869, 4363912280, 34161879247, 273906591562, 2248935278231, 18909284838057, 162842178607893, 1436660527685476, 12988076148036405, 120345643023918566, 1143054910071718088, 11129160383826078389 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = (1/x)*Series_Reversion(x/F(x)) and thus A(x) = F(x*A(x)) where F(x) is the g.f. of A107594.
G.f. A(x) = x/Series_Reversion(x*G(x)) and thus A(x) = G(x/A(x)) where G(x) is the g.f. of A107596.
From Paul D. Hanna, Apr 23 2010: (Start)
Let A = g.f. A(x), then A satisfies the continued fraction:
A = 1/(1 - A*x/(1 - (A^3-A)*x/(1 - A^5*x/(1 - (A^7-A^3)*x/(1 - A^9*x/(1- (A^11-A^5)*x/(1 - A^13*x/(1 - (A^15-A^7)*x/(1 - ...)))))))))
due to an identity of a partial elliptic theta function. (End)
From Paul D. Hanna, May 04 2010: (Start)
Let A = g.f. A(x), then A satisfies:
A = Sum_{n>=0} x^n*A^n * Product_{k=1..n} (1 - x*A^(4k-3)) / (1 - x*A^(4k-1))
due to a q-series identity. (End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 + 5292*x^7 +...
Let A = g.f. A(x) then
A = 1 + x*A^1 + x^2*A^4 + x^3*A^9 + x^4*A^16 + x^5*A^25 ...
= 1 + x*(1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 +...)
+ x^2*(1 + 4*x + 14*x^2 + 56*x^3 + 257*x^4 + 1312*x^5 +...)
+ x^3*(1 + 9*x + 54*x^2 + 291*x^3 + 1557*x^4 + 8568*x^5 +..)
+ x^4*(1 + 16*x + 152*x^2 + 1152*x^3 + 7836*x^4 +...)
+ x^5*(1 + 25*x + 350*x^2 + 3675*x^3 + 32625*x^4 +...)
+ x^6*(1 + 36*x + 702*x^2 + 9912*x^3 + 114201*x^4 +...) +...
= 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 +...
MATHEMATICA
m = 25; A[_] = 0;
Do[A[x_] = 1 + Sum[x^k A[x]^(k^2) + O[x]^j, {k, 1, j}], {j, m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^(j^2)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A325452 A030945 A088554 * A193320 A030882 A273957
KEYWORD
eigen,nonn
AUTHOR
Paul D. Hanna, May 17 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 05:54 EDT 2024. Contains 372758 sequences. (Running on oeis4.)