login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107594
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2-n).
2
1, 1, 1, 3, 10, 42, 194, 979, 5274, 30037, 179527, 1120612, 7280750, 49120810, 343547469, 2487670468, 18631824735, 144215785791, 1152745117570, 9508011730755, 80861962283808, 708502494881786, 6390084112199801, 59272034375915217, 564899767969587670
OFFSET
0,4
FORMULA
G.f. A(x) = x/series-reversion(x*G107595(x)) and thus A(x) = G107595(x/A(x)) where G107595(x) is the g.f. of A107595.
G.f. A(x)^2 = x/series-reversion(x*G107596(x)^2) and thus A(x) = G107596(x/A(x)^2) where G107596(x) is the g.f. of A107596.
From Paul D. Hanna, Apr 25 2010: (Start)
Let A = g.f. A(x), then A satisfies the continued fraction:
A = 1/(1- x/(1- (A^2-1)*x/(1- A^4*x/(1- (A^6-A^2)*x/(1- A^8*x/(1- (A^10-A^4)*x/(1- A^12*x/(1- (A^14-A^6)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
(End)
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 42*x^5 + 194*x^6 + 979*x^7 +...
Let A = A(x) then
A = 1 + x*A^0 + x^2*A^2 + x^3*A^6 + x^4*A^12 + x^5*A^20 + x^6*A^30 +...
= 1 + x + (x^2 + 2*x^3 + 3*x^4 + 8*x^5 + 27*x^6 + 110*x^7 +...)
+ (x^3 + 6*x^4 + 21*x^5 + 68*x^6 + 240*x^7 + 948*x^8 + 4140*x^9 +...)
+ (x^4 + 12*x^5 + 78*x^6 + 388*x^7 + 1737*x^8 + 7632*x^9 +...)
+ (x^5 + 20*x^6 + 210*x^7 + 1580*x^8 + 9795*x^9 +...)
+ (x^6 + 30*x^7 + 465*x^8 + 5020*x^9 +...) +...
MATHEMATICA
m = 25; A[_] = 0;
Do[A[x_] = 1 + x + Sum[x^k A[x]^(k^2 - k) + O[x]^j, {k, 2, j}], {j, m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^(j^2-j)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
eigen,nonn
AUTHOR
Paul D. Hanna, May 17 2005
STATUS
approved