login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107591 G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n*(n+1)/2). 10
1, 1, 2, 6, 22, 91, 408, 1939, 9635, 49614, 263140, 1431301, 7959568, 45152340, 260847526, 1532825675, 9154581802, 55537885743, 342147577227, 2140251570508, 13594688301758, 87702596534110, 574815620158265, 3829029514213952 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..23.

FORMULA

G.f. A(x) = (1/x)*series-reversion(x/F(x)) and A(x) = F(x*A(x)) where F(x) = A(x/F(x)) is the g.f. of A107590.

G.f. A(x) = x/series-reversion(x*G(x)) and A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A107592.

Contribution from Paul D. Hanna, Apr 24 2010: (Start)

Let A = g.f. A(x), then A satisfies the continued fraction:

A = 1/(1- A*x/(1- A*(A-1)*x/(1- A^3*x/(1- A^2*(A^2-1)*x/(1- A^5*x/(1- A^3*(A^3-1)*x/(1- A^7*x/(1- A^4*(A^4-1)*x/(1- ...)))))))))

due to an identity of a partial elliptic theta function.

(End)

Contribution from Paul D. Hanna, May 05 2010: (Start)

Let A = g.f. A(x), then A satisfies:

A = Sum_{n>=0} x^n*A^n*Product_{k=1..n} (1-x*A^(2k-1))/(1-x*A^(2k))

due to a q-series identity.

(End)

EXAMPLE

A = 1 + x*A^1 + x^2*A^3 + x^3*A^6 + x^4*A^10 + x^5*A^15 ...

= 1 + (x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 91*x^6 +...)

+ (x^2 + 3*x^3 + 9*x^4 + 31*x^5 + 120*x^6 +...)

+ (x^3 + 6*x^4 + 27*x^5 + 116*x^6 +...)

+ (x^4 + 10*x^5 + 65*x^6 +...) +...

= 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 408*x^6 +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^(j*(j+1)/2)+x*O(x^n))); polcoeff(A, n)}

CROSSREFS

Cf. A107590, A107592, A155805, A219359.

Sequence in context: A342289 A124293 A341382 * A279569 A155866 A150273

Adjacent sequences:  A107588 A107589 A107590 * A107592 A107593 A107594

KEYWORD

eigen,nonn

AUTHOR

Paul D. Hanna, May 17 2005, May 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 09:45 EDT 2021. Contains 343580 sequences. (Running on oeis4.)