login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107589
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*A^(2^(n-1)).
3
1, 1, 2, 5, 15, 52, 205, 921, 4807, 30288, 243338, 2636799, 39930125, 851799936, 25433798924, 1055317281976, 60604557533320, 4808635126697325, 526853206940116357, 79701484897115170371, 16651360300285759198344
OFFSET
0,3
EXAMPLE
A = 1 + x*A + x^2*A^2 + x^3*A^4 + x^4*A^8 + x^5*A^16 +...
= 1 + (x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 52*x^6 +...)
+ (x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 44*x^6 + 154*x^7 +...)
+ (x^3 + 4*x^4 + 14*x^5 + 48*x^6 + 169*x^7 +...)
+ (x^4 + 8*x^5 + 44*x^6 + 208*x^7 +...)
+ (x^5 + 16*x^6 + 152*x^7 +...) +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^(2^(j-1)))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A336021 A186001 A134381 * A249892 A352853 A006790
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2005
STATUS
approved