login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249892
G.f.: Sum_{n>=0} x^n / (1 - n*x - n^2*x^2).
1
1, 1, 2, 5, 15, 52, 207, 923, 4532, 24271, 140581, 874434, 5806557, 40955973, 305544958, 2402139329, 19837601155, 171598571288, 1550865447043, 14611295961047, 143210242799872, 1457573997373131, 15379106145570681, 167962044452359398, 1896100883094424657, 22096376018936592193
OFFSET
0,3
COMMENTS
From Vaclav Kotesovec, Nov 09 2014: (Start)
(a(n))^(1/n) ~ phi^(1-1/w) * n^(1-1/w) / w^(1-1/w), where w = LambertW(phi*e*n).
Limit n->infinity a(n)^(1/n) * LambertW(phi*e*n) / n = phi/e, where phi = (1+sqrt(5))/2 = A001622.
(End)
LINKS
FORMULA
a(n) = Sum_{k=0..n} Fibonacci(n-k+1) * k^(n-k).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 207*x^6 +...
where
A(x) = 1 + x/(1-x-x^2) + x^2/(1-2*x-4*x^2) + x^3/(1-3*x-9*x^2) + x^4/(1-4*x-16*x^2) + x^5/(1-5*x-25*x^2) + x^6/(1-6*x-36*x^2) + x^7/(1-7*x-49*x^2) +...
MAPLE
G:= add(x^n/(1-n*x-n^2*x^2), n=0..40):
S:= series(G, x, 41):
seq(coeff(S, x, i), i=0..40); # Robert Israel, Oct 07 2024
MATHEMATICA
Flatten[{1, Table[Sum[Fibonacci[n-k+1] * k^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 09 2014 *)
PROG
(PARI) {a(n)=polcoeff((sum(m=0, n, x^m/(1-m*x-m^2*x^2 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, fibonacci(n-k+1)*k^(n-k))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A000045.
Sequence in context: A186001 A134381 A107589 * A352853 A006790 A007548
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2014
STATUS
approved