login
A007548
Shifts 3 places left under exponentiation.
(Formerly M1485)
4
1, 1, 1, 1, 2, 5, 15, 53, 213, 961, 4808, 26405, 157965, 1022573, 7122441, 53118601, 422362118, 3566967917, 31887812715, 300848966213, 2987359924149, 31143724848889, 340113005563268, 3882897830626949, 46254432194746377, 573938743829923349, 7406289665830324689
OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
E.g.f. A(x) satisfies differential equation A'''(x)=exp(A(x)), A'(0)=1, A''(0)=1, A'''(0)=1. - Vladimir Kruchinin, Nov 19 2011
MAPLE
exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(a): a:= n-> `if`(n<=2, 1, b(n-3)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
MATHEMATICA
Exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum [Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = Exptr [a]; a[n_] := If[n <= 2, 1, b[n-3]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 06 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A249892 A352853 A006790 * A360052 A328431 A120567
KEYWORD
nonn,eigen
AUTHOR
STATUS
approved