OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..200
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
FORMULA
E.g.f. A(x) satisfies differential equation A'''(x)=exp(A(x)), A'(0)=1, A''(0)=1, A'''(0)=1. - Vladimir Kruchinin, Nov 19 2011
MAPLE
exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(a): a:= n-> `if`(n<=2, 1, b(n-3)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
MATHEMATICA
Exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum [Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = Exptr [a]; a[n_] := If[n <= 2, 1, b[n-3]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 06 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
STATUS
approved