The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007547 Number of steps to compute n-th prime in PRIMEGAME (slow version). (Formerly M5075) 7
 19, 69, 281, 710, 2375, 3893, 8102, 11361, 19268, 36981, 45680, 75417, 101354, 118093, 152344, 215797, 293897, 327571, 429229, 508284, 556494, 701008, 809381, 990746, 1274952, 1435957, 1531854, 1712701, 1820085, 2021938, 2835628, 3107393, 3549288, 3723821 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Table of n, a(n) for n=1..34. J. H. Conway, FRACTRAN: a simple universal programming language for arithmetic, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26. R. K. Guy, Conway's prime producing machine, Math. Mag. 56 (1983), no. 1, 26-33. MAPLE a:= proc(n) option remember; local l, p, m, k; l:= [17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1]: if n=1 then b(0):= 2; a(0):= 0 else a(n-1) fi; p:= b(n-1); for m do for k while not type(p*l[k], integer) do od; p:= p*l[k]; if 2^ilog2(p)=p then break fi od: b(n):= p; m + a(n-1) end: seq(a(n), n=1..10); # Alois P. Heinz, May 01 2011 MATHEMATICA Clear[a]; a[n_] := a[n] = Module[{l, p, m, k}, l = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1}; If[n == 1, b[0] = 2; a[0] = 0, a[n-1]]; p = b[n-1]; For[m=1, True, m++, For[k=1, !IntegerQ[p*l[[k]]], k++]; p = p*l[[k]]; If[2^(Length[IntegerDigits[p, 2]]-1) == p, Break[]]]; b[n] = p; m + a[n-1]]; Table[Print[a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *) PROG (Haskell) import Data.List (elemIndices) a007547 n = a007547_list !! n a007547_list = tail \$ elemIndices 2 \$ map a006530 a007542_list -- Reinhard Zumkeller, Jan 24 2012 CROSSREFS Cf. A007542, A007546. Cf. A006530, A034785. Sequence in context: A300463 A204675 A007546 * A217081 A010007 A172078 Adjacent sequences: A007544 A007545 A007546 * A007548 A007549 A007550 KEYWORD easy,nonn,nice AUTHOR N. J. A. Sloane EXTENSIONS More terms from Alois P. Heinz, May 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 04:28 EDT 2024. Contains 372666 sequences. (Running on oeis4.)