The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006530 Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1. (Formerly M0428) 819
 1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The initial term a(1)=1 is purely conventional: The unit 1 is not a prime number, although it has been considered so in the past. 1 is the empty product of prime numbers, thus 1 has no largest prime factor. - Daniel Forgues, Jul 05 2011 Greatest noncomposite number dividing n, (cf. A008578). - Omar E. Pol, Aug 31 2013 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844. D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section IV.1. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 210. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Daniel Forgues, Table of n, a(n) for n=1..100000 [First 10000 terms from T. D. Noe] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294. MR 0447086 (56 #5401). G. Back and M. Caragiu, The greatest prime factor and recurrent sequences, Fib. Q., 48 (2010), 358-362. A. E. Brouwer, Two number theoretic sums, Stichting Mathematisch Centrum. Zuivere Wiskunde, Report ZW 19/74 (1974): 3 pages. [Cached copy, included with the permission of the author] Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers] Nathan McNew, The Most Frequent Values of the Largest Prime Divisor Function, Exper. Math., 2017, Vol. 26, No. 2, 210-224. OEIS Wiki, Greatest prime factor of n H. P. Robinson, Letter to N. J. A. Sloane, Oct 1981 David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982. Eric Weisstein's World of Mathematics, Greatest Prime Factor FORMULA a(n) = A027748(n, A001221(n)) = A027746(n, A001222(n)); a(n)^A071178(n) = A053585(n). - Reinhard Zumkeller, Aug 27 2011 a(n) = A000040(A061395(n)). - M. F. Hasler, Jan 16 2015 a(n) = n + 1 - Sum_{k=1..n}(floor((k!^n)/n) - floor(((k!^n)-1)/n)). - Anthony Browne, May 11 2016 n/a(n) = A052126(n). - R. J. Mathar, Oct 03 2016 If A020639(n) = n [when n is 1 or a prime] then a(n) = n, otherwise a(n) = a(A032742(n)). - Antti Karttunen, Mar 12 2017 a(n) has average order Pi^2*n/(12 log n) [Brouwer]. See also A046670. - N. J. A. Sloane, Jun 26 2017 MAPLE with(numtheory, divisors); A006530 := proc(n) local i, t1, t2, t3, t4, t5; t1 := divisors(n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then return t3[t4+1-i]; fi; od; 1; end; # alternative A006530 := n->max(1, op(numtheory[factorset](n))); # Peter Luschny, Nov 02 2010 MATHEMATICA Table[ FactorInteger[n][[ -1, 1]], {n, 100}] (* Ray Chandler, Nov 12 2005 and modified by Robert G. Wilson v, Jul 16 2014 *) PROG (PARI) A006530(n)=if(n>1, vecmax(factor(n)[, 1]), 1) \\ Edited to cover n=1. - M. F. Hasler, Jul 30 2015 (MAGMA) [ #f eq 0 select 1 else f[ #f] where f is Factorization(n): n in [1..86] ] // Klaus Brockhaus, Oct 23 2008 (Scheme) ;; The following uses macro definec for the memoization (caching) of the results. A naive implementation of A020639 can be found under that entry. It could be also defined with definec to make it faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme (definec (A006530 n) (let ((spf (A020639 n))) (if (= spf n) spf (A006530 (/ n spf))))) ;; Antti Karttunen, Mar 12 2017 CROSSREFS Cf. A000040, A020639 (smallest prime divisor), A034684, A028233, A034699, A053585. See also A032742, A052126, A070087, A070089, A061395, A175723. Cf. A046670 (partial sums), A104350 (partial products). See A124661 for "popular" primes. Sequence in context: A162325 A324371 A197862 * A327398 A323616 A102095 Adjacent sequences:  A006527 A006528 A006529 * A006531 A006532 A006533 KEYWORD nonn,nice,easy,core AUTHOR EXTENSIONS Edited by M. F. Hasler, Jan 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 8 21:52 EDT 2020. Contains 335537 sequences. (Running on oeis4.)