The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034699 Largest prime power factor of n. 64
 1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 5, 61, 31, 9, 64, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS n divides lcm(1, 2, ..., a(n)). a(n) = A210208(n,A073093(n)) = largest term of n-th row in A210208. - Reinhard Zumkeller, Mar 18 2012 a(n) = smallest m > 0 such that n divides A003418(m). - Thomas Ordowski, Nov 15 2013 a(n) = n when n is a prime power (A000961). - Michel Marcus, Dec 03 2013 Conjecture: For all n between two consecutive prime numbers, all a(n) are different. - I. V. Serov, Jun 19 2019 Disproved with between p=prime(574) = 4177 and prime(575) = 4201, a(4180) = a(4199) = 19. See A308752. - Michel Marcus, Jun 19 2019 Conjecture: For any N > 0, there exist numbers n and m, N < n < n+a(n) <= m, such that all n..m are composite and a(n) = a(m). - I. V. Serov, Jun 21 2019 Conjecture: For all n between two consecutive prime numbers, all (-1)^n*a(n) are different. Checked up to 5*10^7. - I. V. Serov, Jun 23 2019 Disproved: between p = prime(460269635) = 10120168277 and p = prime(460269636) = 10120168507 the numbers n = 10120168284 and m = 10120168498 form a pair such that (-1)^n*a(n) = (-1)^m*a(m) = 107. - L. Joris Perrenet, Jan 05 2020 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from T. D. Noe) FORMULA If n = p_1^e_1 *...* p_k^e_k, p_1 < ... < p_k primes, then a(n) = Max_i p_i^e_i. a(n) = A088387(n)^A088388(n). - Antti Karttunen, Jul 22 2018 a(n) = n/A284600(n) = n - A081805(n) = A034684(n) + A100574(n). - Antti Karttunen, Aug 06 2018 a(n) = a(m) iff m = d*a(n), where d is a divisor of A038610(a(n)). - I. V. Serov, Jun 19 2019 MATHEMATICA f[n_] := If[n == 1, 1, Max[ #[[1]]^#[[2]] & /@ FactorInteger@n]]; Array[f, 79] (* Robert G. Wilson v, Sep 02 2006 *) Array[Max[Power @@@ FactorInteger@ #] &, 79] (* Michael De Vlieger, Jul 26 2018 *) PROG (Haskell) a034699 = last . a210208_row -- Reinhard Zumkeller, Mar 18 2012, Feb 14 2012 (PARI) a(n) = if(1==n, n, my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))); \\ Charles R Greathouse IV, Nov 20 2012, check for a(1) added by Antti Karttunen, Aug 06 2018 (PARI) A034699(n) = if(1==n, n, fordiv(n, d, if(isprimepower(n/d), return(n/d)))); \\ Antti Karttunen, Aug 06 2018 (Python) from sympy import factorint def A034699(n): return max((p**e for p, e in factorint(n).items()), default=1) # Chai Wah Wu, Apr 17 2023 CROSSREFS Cf. A006530, A010055, A020639, A027750, A034684, A028233, A051283, A052128, A053585, A057110, A060818, A038610, A081805, A088387, A088388, A100574, A210208, A284600, A308752. Numbers n ordered by a(n): A305325. Sequence in context: A274346 A345993 A330691 * A354933 A346596 A324388 Adjacent sequences: A034696 A034697 A034698 * A034700 A034701 A034702 KEYWORD nonn,easy,nice AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 16:26 EDT 2023. Contains 363019 sequences. (Running on oeis4.)