|
|
A057110
|
|
Difference between largest prime power factor of n and the smallest number S(n) with S(n)! a multiple of n [taking a(1)=0].
|
|
4
|
|
|
0, 0, 0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 0, 0, 10, 0, 3, 0, 0, 0, 0, 0, 4, 15, 0, 18, 0, 0, 0, 0, 24, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 10, 35, 15, 0, 0, 0, 18, 0, 1, 0, 0, 0, 0, 0, 0, 2, 56, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 15, 0, 0, 0, 0, 10, 72, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 24, 0, 35, 0, 15, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..65537
|
|
FORMULA
|
a(n) = A034699(n) - A002034(n).
|
|
EXAMPLE
|
a(18) = 3 since 18 is a factor of 6!, 9 is the largest prime power factor of 18 and 9-6=3.
|
|
PROG
|
(PARI)
A002034(n) = if(1==n, n, my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
A034699(n) = if(1==n, n, my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))); \\ After code in A034699.
A057110(n) = (A034699(n) - A002034(n)); \\ Antti Karttunen, Jul 22 2018
|
|
CROSSREFS
|
Cf. A002034, A034699, A057108, A057111.
Sequence in context: A277578 A089331 A125856 * A073275 A309528 A293496
Adjacent sequences: A057107 A057108 A057109 * A057111 A057112 A057113
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Henry Bottomley, Aug 08 2000
|
|
EXTENSIONS
|
More terms added and term a(90) corrected from 4 to 3 by Antti Karttunen, Jul 22 2018
|
|
STATUS
|
approved
|
|
|
|