|
|
A125856
|
|
a(n) = least number k such that k^(2^n)+1, k^(2^n)+3, k^(2^n)+7 and k^(2^n)+9 are all prime.
|
|
0
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
In 1958, Schinzel showed that for each n>0, there are infinitely many primes among the numbers k^(2^n)+{1,3,7, or 9}.
|
|
REFERENCES
|
Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42.
|
|
LINKS
|
Table of n, a(n) for n=0..5.
|
|
PROG
|
(PARI) a(n) = {k = 1; while(!isprime(k^(2^n)+1) || !isprime(k^(2^n)+3) || !isprime(k^(2^n)+7) || !isprime(k^(2^n)+9), k++); k; } \\ Michel Marcus, Nov 03 2013
|
|
CROSSREFS
|
Cf. A125855, A057015, A125779, A125780.
Sequence in context: A118202 A277578 A089331 * A057110 A073275 A309528
Adjacent sequences: A125853 A125854 A125855 * A125857 A125858 A125859
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Artur Jasinski, Dec 12 2006
|
|
EXTENSIONS
|
Edited by Don Reble, Dec 16 2006
One more term from Farideh Firoozbakht, Jan 01 2007
|
|
STATUS
|
approved
|
|
|
|