login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125856 a(n) = least number k such that k^(2^n)+1, k^(2^n)+3, k^(2^n)+7 and k^(2^n)+9 are all prime. 0
4, 2, 83270, 5241160, 57171410, 359829200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

In 1958, Schinzel showed that for each n>0, there are infinitely many primes among the numbers k^(2^n)+{1,3,7, or 9}.

REFERENCES

Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42.

LINKS

Table of n, a(n) for n=0..5.

PROG

(PARI) a(n) = {k = 1; while(!isprime(k^(2^n)+1) || !isprime(k^(2^n)+3) || !isprime(k^(2^n)+7) || !isprime(k^(2^n)+9), k++); k; } \\ Michel Marcus, Nov 03 2013

CROSSREFS

Cf. A125855, A057015, A125779, A125780.

Sequence in context: A118202 A277578 A089331 * A057110 A073275 A309528

Adjacent sequences: A125853 A125854 A125855 * A125857 A125858 A125859

KEYWORD

nonn

AUTHOR

Artur Jasinski, Dec 12 2006

EXTENSIONS

Edited by Don Reble, Dec 16 2006

One more term from Farideh Firoozbakht, Jan 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 00:49 EDT 2023. Contains 361599 sequences. (Running on oeis4.)