login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125855
Numbers k such that k+1, k+3, k+7 and k+9 are all primes.
6
4, 10, 100, 190, 820, 1480, 1870, 2080, 3250, 3460, 5650, 9430, 13000, 15640, 15730, 16060, 18040, 18910, 19420, 21010, 22270, 25300, 31720, 34840, 43780, 51340, 55330, 62980, 67210, 69490, 72220, 77260, 79690, 81040, 82720, 88810, 97840
OFFSET
1,1
COMMENTS
It seems that, with the exception of 4, all terms are multiples of 10. - Emeric Deutsch, Dec 24 2006
In fact, all terms except 4 are congruent to 10 (mod 30). - Franklin T. Adams-Watters, Jun 05 2014
For n > 1: a(n) = 10*A007811(n-1). - Reinhard Zumkeller, Jul 18 2014 [Comment corrected by Jens Kruse Andersen, Jul 19 2014]
LINKS
FORMULA
a(n) = A007530(n) - 1. - R. J. Mathar, Jun 14 2017
EXAMPLE
For k = 10, the numbers 10 + 1 = 11, 10 + 3 = 13, 10 + 7 = 17, 10 + 9 = 19 are prime. - Marius A. Burtea, May 18 2019
MAPLE
a:=proc(n): if isprime(n+1)=true and isprime(n+3)=true and isprime(n+7)=true and isprime(n+9)=true then n else fi end: seq(a(n), n=1..500000); # Emeric Deutsch, Dec 24 2006
MATHEMATICA
Do[If[(PrimeQ[x + 1]) && (PrimeQ[x + 3]) && (PrimeQ[x + 7]) && (PrimeQ[x + 9]), Print[x]], {x, 1, 10000}]
(* Second program *)
Select[Range[10^5], Times @@ Boole@ Map[PrimeQ, # + {1, 3, 7, 9}] == 1 &] (* Michael De Vlieger, Jun 12 2017 *)
Select[Range[100000], AllTrue[#+{1, 3, 7, 9}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 02 2018 *)
PROG
(Haskell)
a125855 n = a125855_list !! (n-1)
a125855_list = map (pred . head) $ filter (all (== 1) . map a010051') $
iterate (zipWith (+) [1, 1, 1, 1]) [1, 3, 7, 9]
-- Reinhard Zumkeller, Jul 18 2014
(Magma) [n:n in [1..100000]| IsPrime(n+1) and IsPrime(n+3) and IsPrime(n+7) and IsPrime(n+9)]; // Marius A. Burtea, May 18 2019
(PARI) is(n) = my(v=[1, 3, 7, 9]); for(t=1, #v, if(!ispseudoprime(n+v[t]), return(0))); 1 \\ Felix Fröhlich, May 18 2019
CROSSREFS
Cf. A010051, A245304 (subsequence), A007811.
Sequence in context: A156329 A266839 A203179 * A261842 A153743 A370987
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2006
EXTENSIONS
More terms from Emeric Deutsch, Dec 24 2006
STATUS
approved