login
A038610
Least common multiple of integers less than and prime to n.
14
1, 1, 2, 3, 12, 5, 60, 105, 280, 63, 2520, 385, 27720, 6435, 8008, 45045, 720720, 85085, 12252240, 2909907, 3695120, 1322685, 232792560, 37182145, 1070845776, 128707425, 2974571600, 717084225, 80313433200, 215656441, 2329089562800
OFFSET
1,3
COMMENTS
If n is a prime power, tau(a(n)) is the number of times n occurs in A034699. (If n is not a prime power, it does not occur in A034699.) - Franklin T. Adams-Watters, Apr 01 2008
a(n) = lcm(A038566(n,k): k = 1..A000010(n)). - Reinhard Zumkeller, Sep 21 2013
FORMULA
a(n) = e^[Sum_{k=1..n} (1-floor(n^k/k)+floor((n^k -1)/k))*Mangoldt(k)] where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016
EXAMPLE
Since 1, 5, 7, and 11 are relatively prime to 12, a(12) = LCM(1,5,7,11) = 385.
MAPLE
A038610 := n -> ilcm(op(select(k->igcd(n, k)=1, [$1..n]))); # Peter Luschny, Jun 25 2011
MATHEMATICA
Table[ LCM@@ Flatten[ Position[ GCD[ n, # ]& /@ Range[ n ], 1 ] ], {n, 32} ]
Join[{1}, Table[LCM@@Select[Range[n-1], CoprimeQ[#, n]&], {n, 2, 40}]] (* Harvey P. Dale, Mar 05 2016 *)
PROG
(PARI) a(n) = local(r); r=1; for(i=1, n-1, if(gcd(i, n)==1, r=lcm(r, i))); r \\ Franklin T. Adams-Watters, Apr 01 2008
(Haskell)
a038610 = foldl lcm 1 . a038566_row
-- Reinhard Zumkeller, Sep 21 2013, Oct 04 2011
CROSSREFS
Sequence in context: A282216 A245678 A124444 * A334313 A325760 A056819
KEYWORD
nonn,nice
STATUS
approved