login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245678
Denominator of sum of fractions A182972(k) / A182973(k) such that A182972(k) + A182973(k) = n.
5
2, 3, 12, 5, 60, 35, 280, 63, 2520, 77, 27720, 1287, 8008, 6435, 144144, 2431, 2450448, 46189, 3695120, 146965, 232792560, 96577, 1070845776, 1300075, 2974571600, 5014575, 11473347600, 215441, 332727080400, 31556720475, 486207248800, 20419054425
OFFSET
3,1
COMMENTS
A182972(n) and A182973(n) provide an enumeration of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator;
a(n) = denominator(sum(A182972(k)/A182973(k): k such that A182972(k)+A182973(k)=n));
A245718(n) = floor(A245677(n)/a(n)).
LINKS
Paul Yiu, Recreational Mathematics, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
EXAMPLE
See A245677.
PROG
(Haskell)
import Data.Ratio ((%), denominator)
a245678 n = denominator $ sum
[num % den | num <- [1 .. div n 2], let den = n - num, gcd num den == 1]
CROSSREFS
Cf. A245677 (numerator), A182972, A182973, A245718.
Sequence in context: A288058 A281850 A282216 * A124444 A038610 A334313
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Jul 30 2014
STATUS
approved