login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245679
a(n) = pg(n, 3) + pg(n, 4) + ... + pg(n, n) where pg(n, m) is the m-th n-th-order polygonal number.
3
0, 0, 0, 6, 25, 69, 154, 300, 531, 875, 1364, 2034, 2925, 4081, 5550, 7384, 9639, 12375, 15656, 19550, 24129, 29469, 35650, 42756, 50875, 60099, 70524, 82250, 95381, 110025, 126294, 144304, 164175, 186031, 210000, 236214, 264809, 295925, 329706, 366300
OFFSET
0,4
COMMENTS
This is also [0, 0, 0] together with the partial sums of the terms of A005900 that are greater than 1. - J. M. Bergot, Jun 02 2022
FORMULA
a(n) = (-6 - n + 2*n^2 - 2*n^3 + n^4)/6 for n>1.
G.f.: x^3*(x-3)*(x^2-x+2) / (x-1)^5.
EXAMPLE
a(5) = pg(5, 3) + pg(5, 4) + pg(5, 5) = 12 + 22 + 35 = 69.
MATHEMATICA
CoefficientList[Series[x^3 (x - 3) (x^2 - x + 2)/(x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 01 2014 *)
PROG
(PARI) pg(n, m) = (m^2*(n-2)-m*(n-4))/2
vector(50, n, sum(m=3, n-1, pg(n-1, m)))
CROSSREFS
Sequence in context: A096958 A166814 A241170 * A354392 A211911 A339194
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jul 29 2014
STATUS
approved