login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = pg(n, 3) + pg(n, 4) + ... + pg(n, n) where pg(n, m) is the m-th n-th-order polygonal number.
3

%I #32 Jul 18 2022 08:19:04

%S 0,0,0,6,25,69,154,300,531,875,1364,2034,2925,4081,5550,7384,9639,

%T 12375,15656,19550,24129,29469,35650,42756,50875,60099,70524,82250,

%U 95381,110025,126294,144304,164175,186031,210000,236214,264809,295925,329706,366300

%N a(n) = pg(n, 3) + pg(n, 4) + ... + pg(n, n) where pg(n, m) is the m-th n-th-order polygonal number.

%C This is also [0, 0, 0] together with the partial sums of the terms of A005900 that are greater than 1. - _J. M. Bergot_, Jun 02 2022

%H Vincenzo Librandi, <a href="/A245679/b245679.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = (-6 - n + 2*n^2 - 2*n^3 + n^4)/6 for n>1.

%F G.f.: x^3*(x-3)*(x^2-x+2) / (x-1)^5.

%e a(5) = pg(5, 3) + pg(5, 4) + pg(5, 5) = 12 + 22 + 35 = 69.

%t CoefficientList[Series[x^3 (x - 3) (x^2 - x + 2)/(x - 1)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 01 2014 *)

%o (PARI) pg(n, m) = (m^2*(n-2)-m*(n-4))/2

%o vector(50, n, sum(m=3, n-1, pg(n-1, m)))

%Y Cf. A005900, A241452.

%K nonn,easy

%O 0,4

%A _Colin Barker_, Jul 29 2014