login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241170
Steffensen's bracket function [n,n-3].
2
6, 25, 67, 145, 275, 476, 770, 1182, 1740, 2475, 3421, 4615, 6097, 7910, 10100, 12716, 15810, 19437, 23655, 28525, 34111, 40480, 47702, 55850, 65000, 75231, 86625, 99267, 113245, 128650, 145576, 164120, 184382, 206465, 230475, 256521, 284715, 315172
OFFSET
3,1
LINKS
Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Sheila Sundaram, and Lei Xue, Topology of Cut Complexes II, arXiv:2407.08158 [math.CO], 2024. See p. 15.
J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, Vol. 11, pp. 75-97, 1928.
FORMULA
See A241168.
a(n) = (n-2)*(n-1)*(24 + 7*n + 3*n^2)/24. - Vaclav Kotesovec, Apr 23 2014
From Vincenzo Librandi, Dec 12 2014: (Start)
G.f.: x^3*(6-5*x+2*x^2)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.(End)
MAPLE
with(combinat);
T:=proc(n, k) add(stirling2(n, s+1)*s!/k!, s=k..n-1); end;
[seq(T(n, n-3), n=3..16)];
MATHEMATICA
Table[(n-2)*(n-1)*(24 + 7*n + 3*n^2)/24, {n, 3, 20}] (* Vaclav Kotesovec, Apr 23 2014 *)
CoefficientList[Series[(6 - 5 x + 2 x^2) / (1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 12 2014 *)
PROG
(Magma) [(n-2)*(n-1)*(24+7*n+3*n^2)/24: n in [3..50]]; // Vincenzo Librandi, Dec 12 2014
(Magma) I:=[6, 25, 67, 145, 275]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 12 2014
(PARI) for(n=3, 30, print1((n-2)*(n-1)*(24+7*n+3*n^2)/24, ", ")) \\ G. C. Greubel, Feb 07 2018
CROSSREFS
A diagonal of the triangular array in A241168.
Sequence in context: A332698 A096958 A166814 * A245679 A354392 A211911
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 22 2014
STATUS
approved