login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241169 Steffensen's bracket function [n,3]. 1
0, 0, 0, 1, 14, 145, 1450, 15421, 180894, 2359225, 34072850, 540848341, 9363767974, 175619185105, 3547113529050, 76761061273261, 1771884886830254, 43456922321543785, 1128511554354422050, 30933862439582514181, 892562598747547111734, 27041608332832948251265, 858281473267724898703850 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
REFERENCES
J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, 11 (1928), 75-97.
LINKS
J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, Vol. 11, pp. 75-97, 1928.
FORMULA
See A241168.
a(n) ~ (n-1)! / (6*(log(2))^n). - Vaclav Kotesovec, Apr 22 2014
MAPLE
with(combinat);
T:=proc(n, k) add(stirling2(n, s+1)*s!/k!, s=k..n-1); end;
[seq(T(n, 3), n=1..16)];
MATHEMATICA
Flatten[{0, 0, 0, Table[Sum[StirlingS2[n, s+1]*s!/3!, {s, 3, n-1}], {n, 4, 20}]}] (* Vaclav Kotesovec, Apr 22 2014 *)
CROSSREFS
A diagonal of the triangular array in A241168.
Sequence in context: A276250 A099914 A016278 * A209347 A132934 A027473
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 22 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 19:24 EST 2024. Contains 370378 sequences. (Running on oeis4.)