login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027473
Second column of A027466.
8
1, 14, 147, 1372, 12005, 100842, 823543, 6588344, 51883209, 403536070, 3107227739, 23727920916, 179936733613, 1356446145698, 10173346092735, 75960984159088, 564959819683217, 4187349251769726, 30939858360298531, 227977903707462860, 1675637592249852021, 12288009009832248154
OFFSET
1,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = n*7^(n-1).
a(n) = 14*a(n-1) - 49*a(n-2) with a(1) = 1, a(2) = 14.
a(n) = A003415(7^n). - Bruno Berselli, Oct 22 2013
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 7*log(7/6).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*log(8/7). (End)
From Stefano Spezia, May 05 2024: (Start)
G.f.: x/(1 - 7*x)^2.
E.g.f.: x*exp(7*x). (End)
MATHEMATICA
Join[{a=1, b=14}, Table[c=14*b-49*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
LinearRecurrence[{14, -49}, {1, 14}, 19] (* Stefano Spezia, May 05 2024 *)
PROG
(Magma) [n*7^(n-1): n in [1..35]]; // Vincenzo Librandi, Jun 06 2011
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 29 2001
Offset changed from 2 to 1 by Vincenzo Librandi, Jun 06 2011
STATUS
approved