login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053464
a(n) = n*5^(n-1).
15
0, 1, 10, 75, 500, 3125, 18750, 109375, 625000, 3515625, 19531250, 107421875, 585937500, 3173828125, 17089843750, 91552734375, 488281250000, 2593994140625, 13732910156250, 72479248046875, 381469726562500
OFFSET
0,3
COMMENTS
With a different offset, number of n-permutations of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly one u. - Zerinvary Lajos, Dec 28 2007
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2. - Paul Barry, Oct 15 2004
a(n) = 10*a(n-1) - 25*a(n-2); n>1; a(0)=0, a(1)=1.
Fourth binomial transform of n (starting 0, 1, 10...) Convolution of powers of 5.
G.f.: x/(1-5*x)^2; E.g.f.: x*exp(5*x). - Paul Barry, Jul 22 2003
a(n) = - 25^n * a(-n) for all n in Z. - Michael Somos, Jun 26 2017
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 5*log(5/4).
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(6/5). (End)
MATHEMATICA
Join[{a=0, b=1}, Table[c=10*b-25*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
Table[n*5^(n-1), {n, 0, 20}] (* or *) LinearRecurrence[{10, -25}, {0, 1}, 30] (* Harvey P. Dale, Jul 22 2014 *)
PROG
(PARI) {a(n) = n*5^(n-1)}; /* Michael Somos, Sep 12 2005 */
(Sage) [lucas_number1(n, 10, 25) for n in range(0, 21)] # Zerinvary Lajos, Apr 26 2009
(Magma) [n*(5^(n-1)): n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 13 2000
EXTENSIONS
More terms from James A. Sellers, Feb 02 2000
STATUS
approved