login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053467
Number of directed 2-multigraphs on n nodes.
5
1, 6, 138, 22815, 29197989, 286181094816, 21712697070199704, 12980080058620326927885, 62082385554465497895132149640, 2405193620328895144597707267893468286, 762399006478986275307113015668690102196187810
OFFSET
1,2
COMMENTS
A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
LINKS
MATHEMATICA
Table[CycleIndex[PairGroup[SymmetricGroup[n], Ordered], t] /.Table[t[i] -> 1 + x^i + y^i, {i, 1, n^2}] /. {x -> 1, y -> 1}, {n, 1, 7}] (* Geoffrey Critzer, Mar 08 2011 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
a[n_] := (s=0; Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!);
Array[a, 15] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
(Python)
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A053467(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))<<1)+sum(q*r**2 for q, r in p.items())-s), prod(q**r*factorial(r) for q, r in p.items())) for s, p in partitions(n, size=True))) # Chai Wah Wu, Jul 10 2024
CROSSREFS
Sequence in context: A307353 A366227 A155558 * A288557 A288565 A090944
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 13 2000
EXTENSIONS
a(11) from Andrew Howroyd, Oct 22 2017
STATUS
approved