login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053469
a(n) = n*6^(n-1).
12
1, 12, 108, 864, 6480, 46656, 326592, 2239488, 15116544, 100776960, 665127936, 4353564672, 28298170368, 182849716224, 1175462461440, 7522959753216, 47958868426752, 304679870005248, 1929639176699904, 12187194800209920, 76779327241322496, 482612914088312832
OFFSET
1,2
COMMENTS
Binomial transform of A053464. - R. J. Mathar, Oct 26 2011
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = 12*a(n-1) - 36*a(n-2), n>=3.
G.f.: x/(6x-1)^2. - Zerinvary Lajos, Apr 28 2009
E.g.f.: x*exp(6*x). - Michael Somos, Dec 16 2019
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 6*log(6/5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(7/6). (End)
EXAMPLE
G.f. = x + 12*x^2 + 108*x^3 + 864*x^4 + 6480*x^5 + 46656*x^6 + ... - Michael Somos, Dec 16 2019
MATHEMATICA
f[n_]:=n*6^(n-1); f[Range[40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{12, -36}, {1, 12}, 20] (* Harvey P. Dale, Apr 28 2015 *)
PROG
(Sage) [lucas_number1(n, 12, 36) for n in range(1, 21)] # Zerinvary Lajos, Apr 28 2009
(Magma) [n*(6^(n-1)): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
(PARI) a(n)=n*6^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A353047 A037972 A111990 * A055533 A037602 A037707
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 13 2000
EXTENSIONS
More terms from James A. Sellers, Feb 02 2000
More terms from Zerinvary Lajos, Oct 02 2007
STATUS
approved