login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053462
Number of positive squarefree integers less than 10^n.
9
0, 6, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302
OFFSET
0,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..36 (from the b-file at A071172; terms 0..20 from Charles R Greathouse IV)
FORMULA
a(n)/10^n = (6/Pi^2)*(1+o(1)), cf. A059956.
a(n) = A071172(n) - [n <= 1] where [] is the Iverson bracket. - Chai Wah Wu, Jun 01 2024
EXAMPLE
There are 608 squarefree integers smaller than 1000.
MATHEMATICA
a[n_] := Module[{t=10^n-1}, Sum[MoebiusMu[k]Floor[t/k^2], {k, 1, Sqrt[t]}]]
PROG
(PARI) a(n)=sum(d=1, sqrtint(n=10^n-1), n\d^2*moebius(d)) \\ Charles R Greathouse IV, Nov 14 2012
(PARI) a(n)=my(s); forsquarefree(d=1, sqrtint(n=10^n-1), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
(Python)
from math import isqrt
from sympy import mobius
def A053462(n):
m = 10**n-1
return sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) # Chai Wah Wu, Jun 01 2024
CROSSREFS
Apart from initial term, same as A071172.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009
Sequence in context: A069618 A155458 A152281 * A160751 A236670 A142970
KEYWORD
nonn
AUTHOR
Harvey P. Dale, Aug 01 2001
EXTENSIONS
More terms from Dean Hickerson and Vladeta Jovovic, Aug 06, 2001
One more term from Jud McCranie, Sep 01 2005
a(0)=0 and a(14)-a(17) from Gerard P. Michon, Apr 30 2009
a(18)-a(20) from Charles R Greathouse IV, Jan 08 2018
STATUS
approved