login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*5^(n-1).
15

%I #56 Sep 08 2022 08:45:00

%S 0,1,10,75,500,3125,18750,109375,625000,3515625,19531250,107421875,

%T 585937500,3173828125,17089843750,91552734375,488281250000,

%U 2593994140625,13732910156250,72479248046875,381469726562500

%N a(n) = n*5^(n-1).

%C With a different offset, number of n-permutations of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly one u. - _Zerinvary Lajos_, Dec 28 2007

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

%H Vincenzo Librandi, <a href="/A053464/b053464.txt">Table of n, a(n) for n = 0..500</a>

%H Frank Ellermann, <a href="/A001792/a001792.txt">Illustration of binomial transforms</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=756">Encyclopedia of Combinatorial Structures 756</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-25).

%F a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2. - _Paul Barry_, Oct 15 2004

%F a(n) = 10*a(n-1) - 25*a(n-2); n>1; a(0)=0, a(1)=1.

%F Fourth binomial transform of n (starting 0, 1, 10...) Convolution of powers of 5.

%F G.f.: x/(1-5*x)^2; E.g.f.: x*exp(5*x). - _Paul Barry_, Jul 22 2003

%F a(n) = - 25^n * a(-n) for all n in Z. - _Michael Somos_, Jun 26 2017

%F From _Amiram Eldar_, Oct 28 2020: (Start)

%F Sum_{n>=1} 1/a(n) = 5*log(5/4).

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(6/5). (End)

%t Join[{a=0,b=1},Table[c=10*b-25*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2011 *)

%t Table[n*5^(n-1),{n,0,20}] (* or *) LinearRecurrence[{10,-25},{0,1},30] (* _Harvey P. Dale_, Jul 22 2014 *)

%o (PARI) {a(n) = n*5^(n-1)}; /* _Michael Somos_, Sep 12 2005 */

%o (Sage) [lucas_number1(n,10,25) for n in range(0, 21)] # _Zerinvary Lajos_, Apr 26 2009

%o (Magma) [n*(5^(n-1)): n in [0..30]]; // _Vincenzo Librandi_, Jun 09 2011

%Y Cf. A002697, A027471, A001787.

%K easy,nonn

%O 0,3

%A _Barry E. Williams_, Jan 13 2000

%E More terms from _James A. Sellers_, Feb 02 2000